Towards a whole-genome sequence for rye (Secale cereale L.).

نویسندگان

  • Eva Bauer
  • Thomas Schmutzer
  • Ivan Barilar
  • Martin Mascher
  • Heidrun Gundlach
  • Mihaela M Martis
  • Sven O Twardziok
  • Bernd Hackauf
  • Andres Gordillo
  • Peer Wilde
  • Malthe Schmidt
  • Viktor Korzun
  • Klaus F X Mayer
  • Karl Schmid
  • Chris-Carolin Schön
  • Uwe Scholz
چکیده

We report on a whole-genome draft sequence of rye (Secale cereale L.). Rye is a diploid Triticeae species closely related to wheat and barley, and an important crop for food and feed in Central and Eastern Europe. Through whole-genome shotgun sequencing of the 7.9-Gbp genome of the winter rye inbred line Lo7 we obtained a de novo assembly represented by 1.29 million scaffolds covering a total length of 2.8 Gbp. Our reference sequence represents nearly the entire low-copy portion of the rye genome. This genome assembly was used to predict 27 784 rye gene models based on homology to sequenced grass genomes. Through resequencing of 10 rye inbred lines and one accession of the wild relative S. vavilovii, we discovered more than 90 million single nucleotide variants and short insertions/deletions in the rye genome. From these variants, we developed the high-density Rye600k genotyping array with 600 843 markers, which enabled anchoring the sequence contigs along a high-density genetic map and establishing a synteny-based virtual gene order. Genotyping data were used to characterize the diversity of rye breeding pools and genetic resources, and to obtain a genome-wide map of selection signals differentiating the divergent gene pools. This rye whole-genome sequence closes a gap in Triticeae genome research, and will be highly valuable for comparative genomics, functional studies and genome-based breeding in rye.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of new PCR-based markers specific for chromosome arms of rye (Secale cereale L.).

PCR-based rye (Secale cereale L.) chromosome-specific markers can contribute to the effective utilization of elite genes of rye in wheat (Triticum aestivum L.) breeding programs. In the present study, 578 new PCR-based rye-specific markers have been developed by using specific length amplified fragment sequencing (SLAF-seq) technology, and 76 markers displayed different polymorphism among rye K...

متن کامل

Reticulate evolution of the rye genome.

Rye (Secale cereale) is closely related to wheat (Triticum aestivum) and barley (Hordeum vulgare). Due to its large genome (~8 Gb) and its regional importance, genome analysis of rye has lagged behind other cereals. Here, we established a virtual linear gene order model (genome zipper) comprising 22,426 or 72% of the detected set of 31,008 rye genes. This was achieved by high-throughput transcr...

متن کامل

Polyploidization-induced genome variation in triticale.

Polyploidization-induced genome variation in triticale (x Triticosecale Wittmack) was investigated using both AFLP and RFLP analyses. The AFLP analyses were implemented with both EcoRI-MseI (E-M) and PstI-MseI (P-M) primer combinations, which, because of their relative differences in sensitivity to cytosine methylation, primarily amplify repetitive and low-copy sequences, respectively. The resu...

متن کامل

Chromosomal assignment of centromere-specific histone CENH3 genes in rye (Secale cereale L.) and their phylogeny

Centromeres are essential for correct chromosome segregation during cell division and are determined by the presence of centromere-specific histone 3 (CENH3). Most of the diploid plant species, in which the structure and copy number of CENH3 genes have been determined, have this gene as a singleton; however, some cereal species in the tribe Triticeae have been found to have CENH3 in two variant...

متن کامل

An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L).

Aluminum toxicity is a major problem in agriculture worldwide. Among the cultivated Triticeae, rye (Secale cereale L.) is one of the most Al tolerant and represents an important potential source of Al tolerance for improvement of wheat. The Alt4 Al-tolerance locus of rye contains a cluster of genes homologous to the single-copy Al-activated malate transporter (TaALMT1) Al-tolerance gene of whea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 89 5  شماره 

صفحات  -

تاریخ انتشار 2017